Effects of SNP marker density and training population size on prediction accuracy in alfalfa (Medicago sativa L.) genomic selection

Author:

Wang Hu1ORCID,Bai Yuguang1,Biligetu Bill1ORCID

Affiliation:

1. Department of Plant Sciences, College of Agriculture and Bioresources University of Saskatchewan Saskatoon Saskatchewan Canada

Abstract

AbstractEffects of individual single‐nucleotide polymorphism (SNP) markers and the size of “training” and “test” populations affect prediction accuracy in genomic selection (GS). This study evaluated 11 subsets of 4932 SNPs using six genetic additive methods to understand marker density in GS prediction in alfalfa (Medicago sativa L.). In the GS methods, the effect of “training” to “test” population size was also evaluated. Fourteen alfalfa populations sampled from long‐term grazing sites were genotyped using genotyping by sequencing for the identification of SNPs. These populations were also phenotyped for six agromorphological and three nutritive traits from 2018 to 2020. The accuracy of GS prediction improved across six GS methods when the ratio of “training” to “test” population size increased. However, the prediction accuracy of the six GS methods reduced to a range of −0.27 to 0.11 when random, uninformative SNPs were used. In this study, five Bayesian methods and ridge‐regression best linear unbiased prediction (rrBLUP) method had similar GS accuracies for “training” sets, but rrBLUP tended to outperform Bayesian methods in independent “test” sets when SNP subsets with high mean‐squared‐estimated‐marker effect were used. These findings can enhance the application of GS in alfalfa genetic improvement.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3