Evaluating effectiveness of clonal plant selection of alfalfa (Medicago sativa L.) and sainfoin (Onobrychis viciifolia Scop.) in mixtures: Mean performance and stability in a multi‐environment trial

Author:

Bhattarai Surendra1,Wang Hu1ORCID,Poudel Hari P.2,Biligetu Bill1ORCID

Affiliation:

1. Department of Plant Sciences, College of Agriculture and Bioresources University of Saskatchewan Saskatoon SK Canada

2. Lethbridge Research Centre Agriculture and Agri‐Food Canada Lethbridge AB Canada

Abstract

AbstractAlfalfa (Medicago sativa L.) ‐ grass or alfalfa ‐ sainfoin (Onobrychis viciifolia Scop.) mixtures are commonly used for pastures in western Canada because of their high forage quality and their low risk of causing frothy bloat in grazing animals. However, the proportion of these two legumes declines in mixed forage stands over time. The objective of this study was to evaluate the effectiveness of selecting superior genotypes from clonally propagated alfalfa or sainfoin under plant competition in different growth environments. For this study, around 100 genotypes of each legume were cloned and transplanted into meadow bromegrass (Bromus riparius Relm.) or alfalfa swards at Saskatoon, SK and Lethbridge, AB, Canada in 2017. Genotype‐environment (G x E) interactions of alfalfa and sainfoin genotypes were analysed by an additive main‐effects and multiplicative interaction (AMMI) model. Significant variations in plant height, spring vigour and total dry matter yield (TDM) were observed for both species. Among the measured traits, plant height was a more highly heritable trait (H2 = .16 for alfalfa and H2 = .18 for sainfoin), while TDM was the least heritable (H2 = .08 for alfalfa and H2 = .04 for sainfoin). In the AMMI Analysis of variance for TDM, the genotype explained <12% of the variation for both species, suggesting a direct selection of yield would result in a low genetic gain. The biplot mean performance (Y) x weighted average of absolute scores from the singular value decomposition of the matrix of BLUPs stability index (WAASB) identified several promising genotypes with superior performance and stability across different environments that were selected for producing synthetic lines. However, the synthetic lines of both alfalfa and sainfoin did not consistently exhibit superior performance in mixtures compared to their respective check cultivars.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3