Q&A: Methods for estimating genetic gain in sub‐Saharan Africa and achieving improved gains

Author:

Dieng Ibnou1ORCID,Gardunia Brian2ORCID,Covarrubias‐Pazaran Giovanny3ORCID,Gemenet Dorcus C.4ORCID,Trognitz Bodo5ORCID,Ofodile Sam1ORCID,Fowobaje Kayode1ORCID,Ntukidem Solomon1ORCID,Shah Trushar6ORCID,Imoro Simon1ORCID,Tripathi Leena6ORCID,Mushoriwa Hapson1ORCID,Mbabazi Ruth2ORCID,Salvo Stella2ORCID,Derera John1ORCID

Affiliation:

1. International Institute of Tropical Agriculture (IITA) Ibadan Nigeria

2. Bayer Crop Science Chesterfield Missouri USA

3. Excellence in Breeding (EiB) c/o International Maize and Wheat improvement Center (CIMMYT) Texcoco Mexico

4. EiB‐CIMMYT c/o ICRAF House United Nations Avenue Nairobi Kenya

5. EiB‐CIMMYT c/o IITA Ibadan Nigeria

6. IITA c/o International Livestock Research Institute (ILRI) Nairobi Kenya

Abstract

AbstractRegular measurement of realized genetic gain allows plant breeders to assess and review the effectiveness of their strategies, allocate resources efficiently, and make informed decisions throughout the breeding process. Realized genetic gain estimation requires separating genetic trends from nongenetic trends using the linear mixed model (LMM) on historical multi‐environment trial data. The LMM, accounting for the year effect, experimental designs, and heterogeneous residual variances, estimates best linear unbiased estimators of genotypes and regresses them on their years of origin. An illustrative example of estimating realized genetic gain was provided by analyzing historical data on fresh cassava (Manihot esculenta Crantz) yield in West Africa (https://github.com/Biometrics‐IITA/Estimating‐Realized‐Genetic‐Gain). This approach can serve as a model applicable to other crops and regions. Modernization of breeding programs is necessary to maximize the rate of genetic gain. This can be achieved by adopting genomics to enable faster breeding, accurate selection, and improved traits through genomic selection and gene editing. Tracking operational costs, establishing robust, digitalized data management and analytics systems, and developing effective varietal selection processes based on customer insights are also crucial for success. Capacity building and collaboration of breeding programs and institutions also play a significant role in accelerating genetic gains.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3