Environmental metagenetics unveil novel plant‐pollinator interactions

Author:

Wizenberg Sydney B.1ORCID,Newburn Laura R.1,Richardson Rodney T.2,Pepinelli Mateus1,Conflitti Ida M.1,Moubony Mashaba1,Borges Daniel3,Guarna M. Marta4,Guzman‐Novoa Ernesto5,Foster Leonard J.6,Zayed Amro1ORCID

Affiliation:

1. Department of Biology York University Toronto Ontario Canada

2. Appalachian Laboratory University of Maryland Center for Environmental Science Frostburg Maryland USA

3. Ontario Beekeepers' Association Tech‐Transfer Program, Orchard Park Office Centre Guelph Ontario Canada

4. Beaverlodge Research Farm, Agriculture and Agri‐Food Canada Beaverlodge Alberta Canada

5. School of Environmental Sciences University of Guelph Guelph Ontario Canada

6. Department of Biochemistry & Molecular Biology and Michael Smith Laboratories Vancouver British Columbia Canada

Abstract

AbstractHoney bees are efficient pollinators of flowering plants, aiding in the plant reproductive cycle and acting as vehicles for evolutionary processes. Their role as agents of selection and drivers of gene flow is instrumental to the structure of plant populations, but historically, our understanding of their influence has been limited to predominantly insect‐dispersed flowering species. Recent metagenetic work has provided evidence that honey bees also forage on pollen from anemophilous species, suggesting that their role as vectors for transmission of plant genetic material is not confined to groups designated as entomophilous, and leading us to ask: could honey bees act as dispersal agents for non‐flowering plant taxa? Using an extensive pollen metabarcoding dataset from Canada, we discovered that honey bees may serve as dispersal agents for an array of sporophytes (Anchistea, Claytosmunda, Dryopteris, Osmunda, Osmundastrum, Equisetum) and bryophytes (Funaria, Orthotrichum, Sphagnum, Ulota). Our findings also suggest that honey bees may occasionally act as vectors for the dispersal of aquatic phototrophs, specifically Coccomyxa and Protosiphon, species of green algae. Our work has shed light on the broad resource‐access patterns that guide plant‐pollinator interactions and suggests that bees could act as vectors of gene flow, and potentially even agents of selection, across Plantae.

Funder

Genome Canada

Ontario Genomics Institute

Publisher

Wiley

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3