Surface‐amorphized nickel sulfide with boosted electrochemical performance for aqueous energy storage

Author:

Wang Haiyang1,Liang Miaomiao2,Li Min3,Qu Yang4,Miao Zongcheng15ORCID

Affiliation:

1. School of Artificial Intelligence, Optics and Electronics (iOPEN) Northwestern Polytechnical University Xi'an China

2. Xi'an Key Laboratory of Textile Composites, School of Materials Science and Engineering Xi'an Polytechnic University Xi'an China

3. Department of Inorganic Chemistry University of Chemistry and Technology Prague Prague Czech Republic

4. Chinese People's Liberation Army Unit 96751 Chifeng China

5. Xi'an Key Laboratory of Advanced Photo‐electronics Materials and Energy Conversion Device, Technological Institute of Materials & Energy Science (TIMES) Xijing University Xi'an China

Abstract

AbstractThe ingenious structural design of electrode materials has a great influence on boosting the integrated conductivity and improving the electrochemical behavior of energy storage equipment. In this work, a surface‐amorphized sandwich‐type Ni3S2 nanosheet is synthesized by an easy hydrothermal and solution treatment technique. Because of the in‐built defect‐rich feature of the amorphous Ni3S2 layer, the constructed crystalline/amorphous heterointerface as well as dual nanopore structure of Ni3S2 nanosheet, the electron/ion transport and interfacial charge transfer is boosted, which contribute to high ionic conductivity and low resistance of the SA‐Ni3S2 electrode. The SA‐Ni3S2 electrode shows high specific capacitance (1767.6 F g−1 at 0.5 A g−1); the SA‐Ni3S2//AC device delivers high specific capacitance (131.2 F g−1 at 0.2 A g−1) and outstanding cycle stability (75% capacitance retention after 10000 cycles). In Ni‐Zn battery measurement, the SA‐Ni3S2//Zn exhibits satisfying specific capacity (211.2 mAh g−1 at 0.5 A g−1) and cycle durability (68% capacity decay after 2000 cycles). The results imply that the rational design of surface‐amorphized heterostructure is helpful for fabrication of electrode materials with high electrochemical performance in energy storage applications.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3