Easily recyclable lithium‐ion batteries: Recycling‐oriented cathode design using highly soluble LiFeMnPO4 with a water‐soluble binder

Author:

Du Hao1,Kang Yuqiong1,Li Chenglei1,Zhao Yun1ORCID,Wozny John2,Li Tao2,Tian Yao1,Lu Jian1,Wang Li3,Kang Feiyu1,Tavajohi Naser4,Li Baohua1

Affiliation:

1. Institute of Materials Research, Tsinghua Shenzhen International Graduate School Tsinghua University Shenzhen China

2. Department of Chemistry and Biochemistry Northern Illinois University DeKalb Illinois USA

3. Institute of Nuclear and New Energy Technology Tsinghua University Beijing China

4. Department of Chemistry Umeå University Umeå Sweden

Abstract

AbstractRecycling lithium‐ion batteries (LIBs) is fundamental for resource recovery, reducing energy consumption, decreasing emissions, and minimizing environmental risks. The inherited properties of materials and design are not commonly attributed to the complexity of recycling LIBs and their effects on the recycling process. The state‐of‐the‐art battery recycling methodology consequently suffers from poor recycling efficiency and high consumption from issues with the cathode and the binder material. As a feasibility study, high‐energy‐density cathode material LiFeMnPO4 with a water‐soluble polyacrylic acid (PAA) binder is extracted with dilute hydrochloric acid at room temperature under oxidant‐free conditions. The cathode is wholly leached with high purity and is suitable for reuse. The cathode is easily separated from its constituent materials and reduces material and energy consumption during recycling by 20% and 7%, respectively. This strategy is utilized to fabricate recyclable‐oriented LiFeMnPO4/graphite LIBs with a PAA binder and carbon paper current collector. Finally, the limitation of the solubility of the binder is discussed in terms of recycling. This research hopefully provides guidance for recycling‐oriented design for the circular economy of the LIB industry.

Publisher

Wiley

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3