Highly efficient vanadium redox flow batteries enabled by a trilayer polybenzimidazole membrane assembly

Author:

Bui Trung Tuyen1,Shin Mingyu2,Rahimi Mohammad3,Bentien Anders3,Kwon Yongchai2ORCID,Henkensmeier Dirk145ORCID

Affiliation:

1. Hydrogen·Fuel Cell Research Center Korea Institute of Science and Technology (KIST) Seoul Republic of Korea

2. Department of Chemical and Biomolecular Engineering Seoul National University of Science and Technology Seoul Republic of Korea

3. Department of Biological and Chemical Engineering Aarhus University Aarhus Denmark

4. KIST School, Division of Energy and Environment Technology University of Science and Technology Seoul Republic of Korea

5. Graduate School of Energy and Environment Korea University Seoul Republic of Korea

Abstract

AbstractA novel polybenzimidazole (PBI)‐based trilayer membrane assembly is developed for application in vanadium redox flow battery (VRFB). The membrane comprises a 1 µm thin cross‐linked poly[2,2′‐(p‐oxydiphenylene)−5,5′‐bibenzimidazole] (OPBI) sandwiched between two 20 µm thick porous OPBI membranes (p‐OPBI) without further lamination steps. The trilayer membrane demonstrates exceptional properties, such as high conductivity and low area‐specific resistance (ASR) of 51 mS cm−1 and 81 mΩ cm2, respectively. Contact with vanadium electrolyte increases the ASR of trilayer membrane only to 158 mΩ cm2, while that of Nafion is 193 mΩ cm2. VO2+ permeability is 2.73 × 10−9 cm2 min−1, about 150 times lower than that of Nafion NR212. In addition, the membrane has high mechanical strength and high chemical stability against VO2+. In VRFB, the combination of low resistance and low vanadium permeability results in excellent performance, revealing high Coulombic efficiency (>99%), high energy efficiency (EE; 90.8% at current density of 80 mA cm−2), and long‐term durability. The EE is one of the best reported to date.

Funder

Korea Institute for Advancement of Technology

Innovationsfonden

National Research Foundation of Korea

Publisher

Wiley

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3