Affiliation:
1. Low-Carbon Technology and Chemical Reaction Engineering Laboratory School of Chemical Engineering Sichuan University Chengdu 610065 P. R. China
2. Institute of New Energy and Low-Carbon Technology Sichuan University Chengdu 610207 P. R. China
Abstract
AbstractWater splitting driven by green electricity from renewable energy input to produce H2 has been widely considered as a promising strategy to realize the goals for future clean energy. However, in conventional overall water electrolysis, the sluggish kinetics and high onset potential of anode OER limit the cathode HER rate, which lowers the overall energy conversion efficiency. Over the past decade, an innovative concept involving hybrid water electrolysis by replacing OER with thermodynamically more favorable oxidation reactions coupling with the cathodic hydrogen evolution reaction has been devised to alleviate the limitations associated with the anodic OER. In this review, we summarize the recent progress concerning electrochemical hydrogen production by coupling the oxidation of molecules incorporating hydroxyl, aldehyde, and amino functional groups, with special emphasis on alternative reactions involving CO and sulfide. Finally, the remaining challenges and future perspectives are also discussed. We hope this review will accelerate the development of novel strategies for practicable H2 production from hybrid water electrolysis.
Funder
National Natural Science Foundation of China
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Catalysis
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献