Affiliation:
1. Multiscale Reaction Engineering KAUST Catalysis Center (KCC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
2. Chemical Engineering Program Physical Science and Engineering (PSE) Division King Abdullah University of Science and Technology
Abstract
AbstractKinetic model development is integral for designing, redesigning, monitoring, and optimizing chemical processes. Of the various approaches used within this field, microkinetic modeling is a crucial tool that focuses on surface events to analyze overall and preferential reaction pathways. This work covers noticeable features of microkinetic modeling for three critical case studies: (i) ammonia to hydrogen, (ii) oxidative coupling of methane to chemicals, and (iii) carbon dioxide hydrogenation for methanol synthesis. We analyze how microkinetic modeling enables predicting and optimizing complex reaction networks, allowing the design of efficient and tailored catalysts with enhanced activity and selectivity.
Funder
King Abdullah University of Science and Technology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献