Development of fungal biocomposites for construction applications

Author:

Brudny K.1,Łach M.1,Kozub B.1ORCID,Korniejenko K.1ORCID

Affiliation:

1. Cracow University of Technology Faculty of Materials Engineering and Physics Warszawska 24 31-155 Cracow Poland

Abstract

AbstractMycelium materials represent a new class of environmentally friendly materials for structural applications that can grow on low‐cost organic waste while achieving satisfactory thermal or acoustic insulation properties. The aim of this study is to grow a biocomposite of mycelium on flax tows and then use it as a reinforcement with a geopolymer matrix. To achieve this, three species of mycelium were selected, a culture process was carried out, and then samples of the composite were synthesized with a geopolymer matrix. To determine the utility in terms of structural applications, the density, compressive strength, and thermal conductivity of the samples were tested. Scanning electron microscope images were also taken to observe the microstructure. The results indicate that it is possible to produce a mycelium composite with a geopolymer matrix. A lower density was achieved for all samples than for the geopolymer without reinforcement. The coefficient of thermal conductivity was reduced only for the sample with one of the mycelia. The compressive strength for biocomposites was between 12.1 MPa–14.2 MPa, this value is enough for some engineering applications.

Funder

Narodowe Centrum Badań i Rozwoju

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3