Combining UAV thermography, point cloud analysis and machine learning for assessing small‐scale evapotranspiration patterns in a tropical rainforest

Author:

Cortés‐Molino Álvaro12,Valdés‐Uribe Alejandra2,Ellsäßer Florian23,Bulusu Medha2,Ahongshangbam Joyson24,Hendrayanto 5,Hölscher Dirk26,Röll Alexander2ORCID

Affiliation:

1. Departamento de Botánica y Fisiología Vegetal Universidad de Málaga Málaga Spain

2. Tropical Silviculture and Forest Ecology University of Göttingen Göttingen Germany

3. Department for Natural Resources, ITC University of Twente Enschede Netherlands

4. Institute for Atmospheric and Earth System Research University of Helsinki Helsinki Finland

5. Forest Management Department Bogor Agricultural University Bogor Indonesia

6. Centre of Biodiversity and Sustainable Land Use University of Göttingen Göttingen Germany

Abstract

AbstractMicroclimate and vegetation structure control evapotranspiration (ET) from land surfaces at stand and landscape scales. Tropical rainforests are among the most diverse and complex terrestrial ecosystems, harbouring vast plant and animal species throughout their dense multistory canopy. They contribute substantially to global precipitation through their high ET. However, there is little information about ET influences at very small spatial scales under given climatic conditions. In a tropical rainforest on Sumatra, we studied the relationship between pixel‐level ET as derived from high‐resolution (~10 cm), near‐surface thermography from an unmanned aerial vehicle (UAV) and canopy structure as derived from red–green–blue (RGB) image and three‐dimensional (3D) point cloud analyses. The 16 derived potential predictors encompassed vegetation height, height variability, vegetation density and reflectance variables. Using regression models, several of the studied variables had a significant linear relationship with ET, but the explained variance was only marginal. However, applying a random forest algorithm including forward feature selection and target oriented cross validation explained substantial parts of the pixel‐level variance in ET (R2 = 0.56–0.65), thus indicating multiple non‐linear relationships with interactions among predictor variables. Therein, green leaf index, leaf area density and vegetation height were often the most important variables for the prediction outcome, but their sequence varied among the four study plots. Overall, combining canopy structure variables derived from RGB photogrammetry explained relatively large parts of spatial ET variations. Our study thus indicates the large potential of combining UAV‐based thermography and photogrammetry techniques with machine learning approaches to better understand ET but also suggests that more work remains to be done in explaining ET patterns at very small spatial scales.

Funder

Deutsche Forschungsgemeinschaft

Universidad de Málaga

Georg-August-Universität Göttingen

Publisher

Wiley

Subject

Earth-Surface Processes,Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3