A Study of Measurement Modeling of Decision Trees in Machine Learning Processes

Author:

Li Guo1,Qin Yi1,Wang Minghua2

Affiliation:

1. College of Intelligent Manufacturing and Electrical Engineering , Nanyang Normal University , Nanyang , Henan , , China .

2. Shandong Gete Aviation Technology Co., Ltd , Jinan , Shandong , , China .

Abstract

Abstract Accompanied by the rapid development of economy and science and technology, the ordinary measurement model with a single method of parameter determination and accuracy is not guaranteed, which has made it difficult to adapt to the measurement needs of complex data in industrial engineering and other systems. This study proposes a measurement model for complex data through the optimization of decision trees in the process of machine learning. Firstly, the gradient-boosting-based decision tree measurement model (GBDT) is constructed by analyzing the decision tree model, and then the model is solved. At the same time, latent variables were included in the model, SEM described the reflection relationship of explicit variables to latent variables, and the GBDT optimization model, including latent variables, was constructed by using the results of the model measurement, including latent variables. Then, for the measurement of multivariate data, the fusion convolutional network was used for image data feature extraction, and the combined measurement model with multi-source data fusion (MDF-DTFEE) was constructed on the basis of the decision tree measurement model. In the empirical analysis of the measurement model, the predicted and actual values of the model training were fitted between 4~60 mg/L and 5~45 ml/L, respectively, and its R² on the training set and test set were 0.948 and 0.886, respectively, with the RMSE lower than 1.2, and none of the MAPE exceeded 0.2. The practical application always had an error range of 1 mg/L, which is in line with the requirements. It fulfills the practical application requirements, demonstrates the practical value of the measurement model in this paper, and provides a useful solution for measuring complex data.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3