Zinc(II) complexation strategy for ultra‐sensitive fluorimetric estimation of molnupiravir: Applications and greenness evaluation

Author:

Salman Baher I.1,Hara Mohammed A.2,El Deeb Sami34,Ibrahim Adel E.45ORCID,Saraya Roshdy E.5,Ali Marwa F. B.6

Affiliation:

1. Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy Al‐Azhar University, Assiut branch Assiut Egypt

2. Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy Al‐Azhar University, Assiut branch Assiut Egypt

3. Institute of Medicinal and Pharmaceutical Chemistry Technische Universitaet Braunschweig Braunschweig Germany

4. Natural and Medical Sciences Research Center University of Nizwa Nizwa Sultanate of Oman

5. Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy Port‐Said University Port Said Egypt

6. Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy Assiut University Assiut Egypt

Abstract

AbstractThe endemicity of the pandemic coronavirus disease 2019 (COVID‐19) infection proved to be transitional only. Spikes are forming again in 2023, and high expectations are returning for reinfections and viral mutations. Molnupiravir (MOL) has been approved as an oral antiviral drug for the treatment of the COVID‐19 causative virion. Therefore, the development of an ultrasensitive, instantaneous, and cost‐effective method for the quantification of MOL in real plasma samples and formulated dosage form are mandatory. The proposed approach is based on the synthesis of a MOL metal‐chelation product. MOL as a ligand was chelated with 1.0 mM zinc(II) in an acetate buffer (pH 5.3). After illumination at 340 nm, the intensity of the MOL fluorescence measured at 386 nm was increased by about 10‐fold. The linearity range was found to be from 60.0 to 800.0 ng mL−1 with limit of quantitation (LOQ) of 28.6 ng mL−1. Two methods were utilized for measuring the greenness of the proposed method (Green Analytical Procedure Index [GAPI] and analytical greenness metric [AGREE] methods), with results equal to 0.8. The binding stoichiometry of MOL with the zinc(II) ion was found to be 2:1. All the experimental parameters were optimized and validated using International Conference on Harmonization (ICH) and United States Food and Drug Administration (US‐FDA) recommendations. Furthermore, the fluorescent probes were successfully utilized in real human plasma with high percentages of recovery (95.6%–97.1%) without any matrix interferences. The mechanism of fluorescent complex formation was confirmed using 1H NMR in the presence and absence of Zn(II). The method was further utilized for testing content uniformity of MOL in its marketed capsule dosage forms.

Publisher

Wiley

Subject

Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3