Towards a scalable bioprocess for rAAV production using a HeLa stable cell line

Author:

Escandell José12ORCID,Moura Filipa12,Carvalho Sofia B.12,Silva Ricardo J. S.12ORCID,Correia Ricardo12,Roldão Antonio12,Gomes‐Alves Patrícia12ORCID,Alves Paula M.12

Affiliation:

1. iBET Instituto de Biologia Experimental e Tecnológica Oeiras Portugal

2. ITQB‐NOVA, Instituto de Tecnologia Química e Biológica António Xavier Universidade Nova de Lisboa Oeiras Portugal

Abstract

AbstractThe majority of recombinant adeno‐associated viruses (rAAV) approved for clinical use or in clinical trials areproduced by transient transfection using the HEK293 cell line. However, this platform has several manufacturing bottlenecks at commercial scales namely, low product quality (full to empty capsid ratio <20% in most rAAV serotypes), lower productivities obtained after scale‐up and the high cost of raw materials, in particular of Good Manufacturing Practice grade plasmid DNA required for transfection. The HeLa‐based stable cell line rAAV production system provides a robust and scalable alternative to transient transfection systems. Nevertheless, the time required to generate the producer cell lines combined with the complexity of rAAV production and purification processes still pose several barriers to the use of this platform as a suitable alternative to the HEK293 transient transfection. In this work we streamlined the cell line development and bioprocessing for the HeLaS3‐based production of rAAV. By exploring this optimized approach, producer cell lines were generated in 3‐4 months, and presented rAAV2 volumetric production (bulk) > 3 × 1011 vg/mL and full to empty capsids ratio (>70%) at 2 L bioreactor scale. Moreover, the established downstream process, based on ion exchange and affinity‐based chromatography, efficiently eliminated process related impurities, including the Adenovirus 5 helper virus required for production with a log reduction value of 9. Overall, we developed a time‐efficient and robust rAAV bioprocess using a stable producer cell line achieving purified rAAV2 yields > 1 × 1011 vg/mL. This optimized platform may address manufacturing challenges for rAAV based medicines.

Funder

Horizon 2020 Framework Programme

Fundação para a Ciência e a Tecnologia

Publisher

Wiley

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3