Engineering of xylanases for the development of biotechnologically important characteristics

Author:

Sürmeli Yusuf1ORCID,Şanlı‐Mohamed Gülşah2

Affiliation:

1. Department of Agricultural Biotechnology Tekirdağ Namık Kemal University Tekirdağ Turkey

2. Department of Chemistry İzmir Institute of Technology İzmir Turkey

Abstract

AbstractXylanases are the main biocatalysts used for the reduction of the xylan backbone from hemicellulose, randomly splitting off β‐1,4‐glycosidic linkages between xylopyranosyl residues. Xylanase market has been annually estimated at 500 million US Dollars and they are potentially used in broad industrial process ranges such as paper pulp biobleaching, xylo‐oligosaccharide production, and biofuel manufacture from lignocellulose. The highly stable xylanases are preferred in the downstream procedure of industrial processes because they can tolerate severe conditions. Almost all native xylanases can not endure adverse conditions thus they are industrially not proper to be utilized. Protein engineering is a powerful technology for developing xylanases, which can effectively work in adverse conditions and can meet requirements for industrial processes. This study considered state‐of‐the‐art strategies of protein engineering for creating the xylanase gene diversity, high‐throughput screening systems toward upgraded traits of the xylanases, and the prediction and comprehensive analysis of the target mutations in xylanases by in silico methods. Also, key molecular factors have been elucidated for industrial characteristics (alkaliphilic enhancement, thermal stability, and catalytic performance) of GH11 family xylanases. The present review explores industrial characteristics improved by directed evolution, rational design, and semi‐rational design as protein engineering approaches for pulp bleaching process, xylooligosaccharides production, and biorefinery & bioenergy production.

Publisher

Wiley

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3