Ion‐Dependent Stability of DNA Origami Nanostructures in the Presence of Photo‐Generated Reactive Oxygen Species

Author:

Rabbe Lukas1,Garcia‐Diosa Jaime Andres1ORCID,Grundmeier Guido1,Keller Adrian1ORCID

Affiliation:

1. Technical and Macromolecular Chemistry Paderborn University Warburger Str. 100 33098 Paderborn Germany

Abstract

DNA origami nanostructures are promising carries for drug delivery applications. However, their limited stability under relevant conditions often presents a challenge. Herein, the structural stability of DNA origami nanostructures is investigated in a setting compatible with their application in photodynamic therapy (PDT). To this end, DNA origami triangles and six‐helix bundles (6HBs) are loaded with the clinically tested photosensitizer methylene blue, which upon irradiation with red light generates reactive oxygen species (ROS) that attack the DNA origami nanostructures. ROS‐induced structural damage is observed to depend on the ionic composition of the surrounding medium and becomes more severe at low ionic strength. Mg2+ ions can efficiently protect the DNA origami nanostructures from ROS‐induced damage and may even heal some of the damage obtained under Mg2+‐free conditions when added after irradiation. Finally, the employed DNA origami 6HBs are more resistant toward ROS‐induced structural damage than the triangles, which is attributed to their markedly different mechanical properties. These results thus provide some fundamental insights into the stabilizing role of DNA origami superstructure that may guide the selection or design of DNA origami nanocarriers with optimized stability for their application in PDT.

Funder

Alexander von Humboldt-Stiftung

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3