Affiliation:
1. Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
2. China General Nuclear New Energy Holdings Co., Ltd. Beijing 100071 China
3. Centre for Catalysis and Clean Energy Gold Coast Campus Griffith University Gold Coast QLD 4222 Australia
Abstract
With the further exploitation of renewable energy sources, electrochemical hydrogen evolution reaction (HER) is considered a key technology to solve environmental problems and achieve global carbon neutrality. Currently, alkaline water electrolyzers (AWEs) have been revitalized as a traditional electrolytic water production industry, yet they face great challenges in achieving new technological breakthroughs due to the catalytic properties of electrode materials. In alkaline media, besides the slow kinetics of oxygen evolution reaction, the sluggish HER needing water dissociation and the mass transfer problems at high current densities are among the major factors limiting the development of alkaline water electrolysis for industrial applications. Therefore, it is of great importance to design HER electrocatalysts with high activity and stability at high current densities (>500 mA cm−2) for industrial applications at the “Research and Development level” (R&D level). Herein, a brief overview of the development of AWEs at the industrial scale is presented, and some mainstream recognized catalysis mechanisms for HER in alkaline electrolytes are summarized. Based on the requirements of industrial application and theoretical guidance, the activation strategies of HER electrocatalysts are also summarized. This review will propose new insights into the future development of alkaline water electrolysis.
Funder
Science and Technology Commission of Shanghai Municipality
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献