Rational Design of Hydrogen Evolution Reaction Electrocatalysts for Commercial Alkaline Water Electrolysis

Author:

Xu Hao Guan1,Zhang Xin Yu1,Ding Yeliang2,Fu Huai Qin3,Wang Rui2,Mao Fangxin1,Liu Peng Fei1,Yang Hua Gui1ORCID

Affiliation:

1. Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China

2. China General Nuclear New Energy Holdings Co., Ltd. Beijing 100071 China

3. Centre for Catalysis and Clean Energy Gold Coast Campus Griffith University Gold Coast QLD 4222 Australia

Abstract

With the further exploitation of renewable energy sources, electrochemical hydrogen evolution reaction (HER) is considered a key technology to solve environmental problems and achieve global carbon neutrality. Currently, alkaline water electrolyzers (AWEs) have been revitalized as a traditional electrolytic water production industry, yet they face great challenges in achieving new technological breakthroughs due to the catalytic properties of electrode materials. In alkaline media, besides the slow kinetics of oxygen evolution reaction, the sluggish HER needing water dissociation and the mass transfer problems at high current densities are among the major factors limiting the development of alkaline water electrolysis for industrial applications. Therefore, it is of great importance to design HER electrocatalysts with high activity and stability at high current densities (>500 mA cm−2) for industrial applications at the “Research and Development level” (R&D level). Herein, a brief overview of the development of AWEs at the industrial scale is presented, and some mainstream recognized catalysis mechanisms for HER in alkaline electrolytes are summarized. Based on the requirements of industrial application and theoretical guidance, the activation strategies of HER electrocatalysts are also summarized. This review will propose new insights into the future development of alkaline water electrolysis.

Funder

Science and Technology Commission of Shanghai Municipality

Publisher

Wiley

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3