Negative Charge Carbon Dots Manufacturing Electrostatic Shielding Layer for Stable Zinc Anode

Author:

Wang Kai1,Gao Jinqiang1,Liu Huaxin1,Jian Weishun1,Huang Jiangnan1,Hu XinYu1,Lai Siyuan1,Li Yafei1,Zou Guoqiang1,Hou Hongshuai1ORCID,Deng Wentao1ORCID,Ji Xiaobo1

Affiliation:

1. College of Chemistry and Chemical Engineering Central South University Changsha Hunan 410083 China

Abstract

Alkaline zinc‐based batteries (AZBs) can yield higher operating voltages due to a more negative electrode potential of zinc metal in alkaline electrolytes compared with neutral electrolytes, delivering high energy density in practical manufacturing applications. However, AZBs also exhibit more pronounced problems due to severe corrosion of the zinc anode by the strongly alkaline electrolyte environment. Combined with the reaction mechanism of alkaline zinc batteries, negatively charged carbon dots are innovatively used to construct a barrier with both physical and chemical effects. Zinc anode exposure to electrolyte is reduced by superior barrier, which assures transmission of zinc ions rather than zincate ions through electrostatic force balance, thus improving the distribution of the electric field for zinc ion deposition as well as avoiding accumulation of zincate ions at the interface. The number of harmful dendrite formation was found to be significantly suppressed by in situ optical microscopy. When coupled with silver oxide cathode for testing, the assembled silver‐zinc battery results in a significant enhancement in its cyclic life. It is believed that this study will propel the development of zinc anode in alkaline batteries and provide new insights for their application.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3