Regulating the Interfacial Charge Density by Constructing a Novel Zn Anode‐Electrolyte Interface for Highly Reversible Zn Anode

Author:

Zhan Shengkang1,Guo Yiming1,Wu Kai2,Ning Fanghua1,Liu Xiaoyu1,Liu Yuyu1,Li Qian3,Zhang Jiujun1,Lu Shigang1,Yi Jin1ORCID

Affiliation:

1. Institute for Sustainable Energy College of Sciences Shanghai University Shanghai 20044 China

2. College of Materials and Textile Engineering Jiaxing University Jiaxing 314001 China

3. College of Materials Science and Engineering National Engineering Research Center for Magnesium Alloys Chongqing University Chongqing 400044 China

Abstract

AbstractAqueous zinc‐ion batteries (AZIBs) have attracted considerable attention. However, due to the uneven distribution of charge density at Zn anode‐electrolyte interface, severe dendrites and corrosion are generated during cycling. In this work, a facile and scalable strategy to address the above‐mentioned issues has been proposed through regulating the charge density at Zn anode‐electrolyte interface. As a proof of concept, amidinothiourea (ATU) with abundant lone‐pair electrons is employed as an interfacial charge modifier for Zn anode‐electrolyte interface. The uniform and increased interfacial charge distribution on Zn anode‐electrolyte interface has been obtained. Moreover, the unique Zn‐bond constructed between N atoms and Zn2+ as well as the hydrogen bonds are formed among ATU and Ac anion/active H2O, which promote the migration and desolvation behavior of Zn2+ at anode‐electrolyte interface. Accordingly, at a trace concentration of 0.01 mg mL−1 ATU, these features endow Zn anode with a long cycling life (more than 800 h), and a high average Columbic efficiency (99.52 %) for Zn||Cu batteries. When pairing with I2 cathode, the improved cycling ability (5000 cycles) with capacity retention of 77.9 % is achieved. The fundamental understanding on the regulation of charge density at anode‐electrolyte interface can facilitate the development of AZIBs.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanghai Municipality

Publisher

Wiley

Subject

General Chemistry,Catalysis,Organic Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3