Utilizing Island Growth in Superlattice Buffers for the Realization of Thick GaN‐on‐Si(111) PIN‐Structures for Power Electronics

Author:

Michler Sondre1ORCID,Thapa Sarad1,Besendörfer Sven2,Albrecht Martin3,Weingärtner Roland2,Meissner Elke24

Affiliation:

1. Siltronic AG Einsteinstraße 172 81677 München Germany

2. Fraunhofer Institute for Integrated Systems and Device Technology IISB Schottkystraße 10 91058 Erlangen Germany

3. Leibniz Institute for Crystal Growth Max‐Born‐Straße 2 12489 Berlin Germany

4. Chair of Electron Devices Friedrich‐Alexander‐Universität Erlangen‐Nürnberg Cauerstraße 6 91058 Erlangen Germany

Abstract

In this study, the effect of implementing island growth in an AlN/Al0.1Ga0.9N superlattice on the structural properties of vertical GaN‐on‐Si(111) PIN‐structures is investigated. It is demonstrated by scanning electron microscopy (SEM) and atomic force microscopy (AFM) that islands are formed on‐top of V‐pits present in the AlN nucleation layer and that the island coalescence height can be controlled by the growth temperature. Defect selective etching analyses confirm a noteworthy reduction in the threading dislocation density (TDD), which diminishes from 1.2 × 109 cm−2 ± 7.5 × 107 cm−2 to 8.5 × 108 cm−2 ± 7.3 ×107 cm−2 as the island coalescence height increases from ≈160 nm to ≈450 nm, achieved by increasing the growth temperature. Cross‐sectional transmission electron microscopy (TEM) shows that island growth is particularly favorable for the reduction of a‐type dislocations. As a consequence of the significant reduction of a‐type dislocations in the buffer, stress relaxation during the GaN film growth is reduced, which is supported by in situ wafer curvature measurements and high‐resolution X‐ray diffraction (XRD). Owing to the optimized island growth conditions, thick and crack‐free GaN layers on Si(111) substrates are obtained with an absolute wafer bow of <50 μm.

Funder

Electronic Components and Systems for European Leadership

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3