Effect of Introducing Defects and Doping on Different Properties of Monolayer MoS2

Author:

Prajakta Kumari1,Vinturaj V. P.1ORCID,Singh Rohit2,Garg Vivek3,Pandey Saurabh Kumar4,Pandey Sushil Kumar1ORCID

Affiliation:

1. Department of Electronics and Communications Engineering National Institute of Technology Karnataka Surathkal Mangalore Karnataka 575025 India

2. Department of Electrical Engineering Shiv Nadar University G.B. Nagar 201314 India

3. Department of Electronics Engineering Sardar Vallabhbhai National Institute of Technology Surat 395007 India

4. Department of Electrical Engineering Indian Institute of Technology Patna Bihta Patna Bihar 801106 India

Abstract

Herein, the comprehensive study of different properties of undoped MoS2, MoS2 lattice with sulfur (S) and, molybdenum (Mo) vacancy, and MoS2 with substitutional doping of niobium (Nb), vanadium (V), and zinc (Zn) atoms is done. The density functional theory (DFT) is used and the electronic properties like density of states, band structure, electron density, and optical properties like dielectric function, optical conductivity, and refractive index are studied. It is observed that undoped MoS2 monolayer shows direct bandgap semiconductor characteristics with a bandgap of around 1.79 eV. P‐type characteristics are observed for Nb‐, V‐, and Zn‐doped MoS2 lattices. The real part and imaginary parts of all optical parameters along x and z directions for different MoS2 supercells are found to be anisotropic in nature up to a photon energy of almost 11 eV and thereafter they show nearly isotropic nature. Finally, it is found that the obtained properties of MoS2 monolayer as per literature are suitable for next‐generation MOSFET application.

Publisher

Wiley

Subject

Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3