Comprehensive Modeling of High‐Performance All‐Inorganic Cs2TiBr6‐Based Perovskite Solar Cells

Author:

Kumar Sujit1,Thiyyakkandy Jasil1,Yadav Ashish Kumar1,Vinturaj Valippurath1,Garg Vivek2,Prabhu Sudheendra3,Pandey Sushil Kumar1ORCID

Affiliation:

1. Department of Electronics and Communication Engineering National Institute of Technology Karnataka Surathkal Mangalore Karnataka 575025 India

2. Department of Electronics Engineering Sardar Vallabhbhai National Institute of Technology, Surat 395007 India

3. Department of Electrical and Electronics Engineering Manipal Academy of Higher Education Manipal Karnataka 576104 India

Abstract

The perovskites are desirable materials for photovoltaic and other renewable green energy technologies. Lead‐based perovskite solar cells (PSC) have recently gained considerable attention due to the abrupt rise in power conversion efficiency, but lead's well‐known toxicity prevents its large‐scale commercialization. One compelling option is Cs2TiBr6, which offers a nontoxic alternative. Herein, the electronic and optical characteristics of Cs2TiBr6 absorber material using density functional theory employing the WIEN2K tool are investigated. The energy band structure of Cs2TiBr6 shows an indirect bandgap of 2.2 eV. Additionally, optical properties are calculated, and the suitability of this material as an absorber for indoor and outdoor photovoltaic devices is investigated. The Cs2TiBr6 material has a peak absorption coefficient of 39.57 × 104 cm−1 and optical conductivity of 1.98 × 1015s−1, demonstrating its suitability as an absorber material. After that, a PSC is modeled using SCAPS‐1D by using the computed parameters. The performance of the modeled perovskite is enhanced by optimization of various parameters, resulting in the achievement of a high‐performance Cs2TiBr6‐based PSC, boasting a power conversion efficiency of 19.9% for air mass AM1.5 G spectra and power conversion efficiency of 16.76% for light emitting diode and 17.18% for incandescent light for indoor light conditions.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3