First‐Principles Study of the Influences of Point Vacancies (VGa, Hi) on the Photocatalytic and Magnetic Performance of Ga2O3:Li/Na/K Systems

Author:

Bai Xuefei1,Hou Qingyu12ORCID,Li Wencai1,Qi Mude2,Gu Yulan1,Si Riguleng3

Affiliation:

1. College of Science Inner Mongolia University of Technology Hohhot 010051 P. R. China

2. School of Materials Science and Engineering Inner Mongolia Key Laboratory of Thin Film and Coatings Inner Mongolia University of Technology Hohhot 010051 P. R. China

3. Inner Mongolia Guodi Land Consolidation Planning and Desigh Co., Ltd Hohht 010051 P. R. China

Abstract

Under vacuum environment, an H interstitial must exist when Ga2O3 is prepared by organometallic chemical vapor deposition. However, few first‐principles systematic studies have been conducted on the influences of point vacancies (VGa, Hi) on the photocatalytic performance and magnetism of Ga2O3:(Li or Na or K) systems, and VGa is a challenge in experiments. Therefore, the first‐principles generalized gradient approximation GGA + U theory is adopted in this study. A first‐principles study is conducted on the formation energy (E f), photocatalytic performance, and magnetism of Ga30MO48 (M = Li or Na or K) and Ga30MHiO48 systems. In the results, it is shown that under Ga‐poor conditions, the Ga30MO48 and Ga30MHiO48 systems are structurally stable and prone to doping. The Ga30MHiO48 system has lower E f, more structural stability, and easier doping than the Ga30MO48 system. The Ga30KO48 system exhibits magnetism, mainly generated by the O1−‐2p spin‐polarized wandering electrons near VGa. The spin‐polarized O2−‐2p and Ga‐4s states near VGa contribute to the hybrid coupling double‐exchange interaction. Moreover, the visible spectrum of the Ga30LiHiO48 system exhibits a significant redshift, a relatively high carrier activity, carrier separation, and relative maximum lifetime. It is relatively best as a photocatalyst.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3