Tidal channel meanders serve as stepping‐stones to facilitate cordgrass landward spread by creating invasion windows

Author:

Ning Zhonghua12ORCID,Cui Baoshan12,Chen Cong13ORCID,Xie Tian1,Gao Weilun13,Zhang Youzheng4,Zhu Zhenchang5,Shao Dongdong1ORCID,Li Dongxue1,Bai Junhong12

Affiliation:

1. School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control Beijing Normal University Beijing China

2. Yellow River Estuary Wetland Ecosystem Observation and Research Station, Ministry of Education Shandong China

3. Advance Institute of Natural Sciences, Beijing Normal University Zhuhai China

4. Key Laboratory of Engineering Oceanography Second Institute of Oceanography, Ministry of Natural Resources Hangzhou China

5. School of Ecology, Environment and Resources Guangdong University of Technology Guangzhou China

Abstract

AbstractUnderstanding the mechanisms by which the geomorphic structures affect habitat invasibility by mediating various abiotic and biotic factors is essential for predicting whether these geomorphic structures may provide spatial windows of opportunity to facilitate range‐expansion of invasive species in salt marshes. Many studies have linked geomorphic landscape features such as tidal channels to invasion by exotic plants, but the role of tidal channel meanders (i.e., convex and concave sides) in regulating the Spartina alterniflora invasion remains unclear. Here, we examined the combined effects of tidal channel meander‐mediated hydrodynamic variables, soil abiotic stresses, and propagule pressure on the colonization of Spartina in the Yellow River Delta, China, by conducting field observations and experiments. The results showed that lower hydrodynamic disturbance, bed shear stress, and higher propagule pressure triggered by eddies due to the convex structure of channel meanders facilitated Spartina seedling establishment and growth, whereas the concave side considerably inhibited the Spartina invasion. Lower soil abiotic stresses also significantly promoted the invasibility of the channel meanders by Spartina. Based on these findings, we propose a conceptual framework to illustrate the effects of the meandering geomorphology of tidal channels on the mechanisms that might allow the landward spread of Spartina and related processes. Our results demonstrate that the meandering geomorphic structures of tidal channels could act as stepping‐stones to significantly facilitate the landward invasion of Spartina along tidal channels. This implies that geomorphic characteristics of tidal channels should be integrated into invasive species control and salt marsh management strategies.

Funder

National Science Foundation

National Postdoctoral Program for Innovative Talents

Publisher

Wiley

Subject

Ecology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3