Affiliation:
1. School of Agriculture and Environmental Science University of Southern Queensland Toowoomba Queensland Australia
2. School of Engineering University of Southern Queensland Toowoomba Queensland Australia
3. Centre for Applied Climate Sciences University of Southern Queensland Toowoomba QLD Australia
4. Faculty of Information Technology Thanh Do University Kim Chung, Hoai Duc Ha Noi Vietnam
Abstract
AbstractPyrolysis of two types of pellets (T1: 100% wheat straw, and T2: 70% wheat straw; 10% sawdust, 10% biochar, and 10% bentonite clay) was performed in a pilot‐scale reactor under a nitrogen environment at 20°C to 700°C. This was to investigate slow pyrolysis yields and gas composition as a function of temperature and residence time. The experimental data were obtained between 300°C and 600°C, with a residence time of 90 min, a nitrogen flow rate of 50 cm3/min, and a heating rate of 20°C/min. The results indicated that the maximum pyrolysis temperature is 605°C with a residence time of 55 min. The product analysis showed that the proportion of gas was higher than that of biochar and bio‐oil. The conversion efficiency increased with higher temperatures and varied between 66% and 76%. The results showed that carbon dioxide was the main component in the produced gas, and the maximum gas concentration was 63.6% at 300°C for T1. The higher temperature and longer residence time increased the syngas (CO + H2) composition for both T1 and T2 treatments. Nevertheless, the produced biochar had a high carbon content and retained a high calorific value, indicating slow pyrolysis is the ideal utilization route of wheat straw pellet biomass for biochar.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献