Pyrolytic Pathway of Wheat Straw Pellet by the Thermogravimetric Analyzer

Author:

Nath Bidhan1ORCID,Bowtell Les2ORCID,Chen Guangnan1ORCID,Graham Elizabeth3ORCID,Nguyen-Huy Thong45ORCID

Affiliation:

1. School of Agriculture and Environmental Science, University of Southern Queensland, Toowoomba, QLD 4350, Australia

2. School of Engineering, University of Southern Queensland, Toowoomba, QLD 4350, Australia

3. Physical and Mechanical Properties Laboratory, Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD 4000, Australia

4. Centre for Applied Climate Sciences, University of Southern Queensland, Toowoomba, QLD 4350, Australia

5. Faculty of Information Technology, Thanh Do University, Kim Chung, Hoai Duc, Ha Noi 100000, Vietnam

Abstract

The study of the thermokinetics of two types of wheat straw pellets, T1 (100% wheat straw) and T2 (70% wheat straw, 10% each of bentonite clay, sawdust, and biochar), under a nitrogen atmosphere (31–800 °C and 5, 10, and 20 °C/min heating rates) using model-free and model-based approaches by TG/DTG data, revealed promising results. While model-free methods were not suitable, model-based reactions, particularly Fn (nth-order phase interfacial) and F2 (second-order) models, effectively described the three-phase consecutive thermal degradation pathway (A→B, C→D, and D→E). The activation energy (Eα) for phases 2 and 3 (Fn model) averaged 136.04 and 358.11 kJ/mol for T1 and 132.86 and 227.10 kJ/mol for T2, respectively. The pre-exponential factor (lnA) varied across heating rates and pellets (T2: 38.244–2.9 × 109 1/s; T1: 1.2 × 102–5.45 × 1014 1/s). Notably, pellets with additives (T2) exhibited a higher degradable fraction due to lower Eα. These findings suggest a promising potential for utilizing wheat straw pellet biomass as a bioenergy feedstock, highlighting the practical implications of this research.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3