Influence of needle design and irrigation depth in the presence of vapor lock: A computational fluid dynamics analysis in human oval roots with apical ramification

Author:

Loroño G.1,Zaldívar J. M. R.2,Arias A.2ORCID,Dorado S.3ORCID,Jimenez‐Octavio J. R.4ORCID

Affiliation:

1. Departamento de Endodoncia Universidad Europea de Madrid Madrid Spain

2. Departamento de Odontología Conservadora, Facultad (Estomatologia II) de Odontología Universidad Complutense de Madrid Madrid Spain

3. Departamento de Ingeniería Mecánica, Escuela Técnica Superior de Ingeniería‐ICAI Universidad Pontificia Comillas Madrid Spain

4. MOBIOS Lab, Instituto de Investigación Tecnológica Universidad Pontificia Comillas Madrid Spain

Abstract

AbstractThis paper aims to study the removal of a vapor lock located in the apical ramification of an oval distal root of a human mandibular molar, simulating different needles and irrigation depths with computational fluid dynamic. A geometric reconstruction of the micro‐CT of the molar shaped up to a WaveOne Gold Medium instrument was used. A vapor lock located in the apical 2 mm was incorporated. Geometries with positive pressure needles (side‐vented [SV], flat or front‐vented [FV] and notched [N]) and the EndoVac microcannula (MiC) were created to run the simulations. Irrigation key parameters (flow pattern, irrigant velocity, apical pressure, wall shear stress) and vapor lock removal were compared among the different simulations. Each needle behaved differently that is, FV removed the vapor lock from one ramification and had the highest apical pressure and shear stress values; SV removed the vapor lock in the main root canal but not in the ramification and reached the lowest apical pressure from the positive pressure needles; N was not able to completely remove the vapor lock and showed low apical pressure and shear stress; MiC removed the vapor lock from one ramification, had negative apical pressure and the lowest maximum shear stress. The main conclusion is that none of the needles showed complete removal of vapor lock. MiC, N, and FV were able to partially remove the vapor lock from one out of the three ramifications. However, SV needle was the only simulation that showed high shear stress with low apical pressure.

Publisher

Wiley

Subject

Applied Mathematics,Computational Theory and Mathematics,Molecular Biology,Modeling and Simulation,Biomedical Engineering,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3