Numerical investigation and optimization of innovative root canal irrigation needles with composite flow control structures

Author:

Sun Xiaoyu1,Tan Youwei1,Liu Ruirui2,Li Ping1

Affiliation:

1. MOE Key Laboratory of Thermo‐Fluid Science and Engineering Xi'an Jiaotong University Xi'an Shaanxi China

2. Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research Xi'an Jiaotong University Xi'an Shaanxi China

Abstract

AbstractNeedle syringe irrigation is frequently used in root canal therapy, and the flow pattern during irrigation can be efficiently manipulated by means of passive flow control technique, resulting in expected irrigation performance improvement. Therefore, novel needles with composite flow control structures are numerically investigated and optimized in this study. Based on the 30G needle, six single/double side‐vented needles with dimple and protrusion are proposed. Two flow rates in line with clinical applications, 5.3 and 8.6 m/s, are used in the analysis. Three performance parameters are investigated. The safety of the irrigation system is evaluated by the root canal apical pressure, whereas the irrigant extension and the flushing efficiency are evaluated by the extending depth and the effective cleaning area, respectively. The results demonstrate that the shear stress of the double‐side‐vented needle is higher while the irrigant extension is enhanced with a dimple structure. The performance of the double‐side‐vented needle with a dimple is superior to that of other designs, with up to 33% improvement in extending depth and a 22% increase in effective cleaning area over the prototype. New needles do not raise risk of irrigant extrusion. Furthermore, the effect of dimple depth and outlet angle are investigated. The needle with a dimple of 0.04 mm depth shows the highest extending depth within the confines of the investigation. The effective cleaning area is significantly influenced by the needle outlets, and the effective cleaning area expands with an increase in needle outlet angle, while the extending depth gradually declines.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3