Affiliation:
1. Institute of Inorganic Chemistry, Faculty of Chemistry University of Vienna Vienna Austria
2. Vienna Doctoral School in Chemistry University of Vienna Vienna Austria
3. Department of Biomedical Imaging and Image Guided Therapy, Division of Nuclear Medicine Medical University of Vienna Vienna Austria
4. Joint Applied Medicinal Radiochemistry Facility University of Vienna and Medical University of Vienna Vienna Austria
5. Ludwig Boltzmann Institute Applied Diagnostics Vienna Austria
6. Molecular Radiopharmacy, INRaSTES, NCSR “Demokritos” Athens Greece
Abstract
Radiolabeled peptides play a key role in nuclear medicine to selectively deliver radionuclides to malignancies for diagnosis (imaging) and therapy. Yet, their efficiency is often compromised by low metabolic stability. The use of 1,4‐disubstituted 1,2,3‐triazoles (1,4‐Tzs) as stable amide bond bioisosteres can increase the half‐life of peptides in vivo while maintaining their biological properties. Previously, the amide‐to‐triazole substitution strategy was used for the stabilization of the pansomatostatin radioligand [111In]In‐AT2S, resulting in the mono‐triazolo‐peptidomimetic [111In]In‐XG1, a radiotracer with moderately enhanced stability in vivo and retained ability to bind multiple somatostatin receptor (SSTR) subtypes. However, inclusion of additional 1,4‐Tz led to a loss of affinity towards SST2R, the receptor overexpressed by most SSTR‐positive cancers. To enhance further the stability of [111In]In‐XG1, alternative modifications at the enzymatically labile position Thr10‐Phe11 were employed. Three novel 1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetic acid (DOTA)‐peptide conjugates were synthesized with a 1,4‐Tz (Asn5‐Ψ[Tz]‐Phe6) and either a β‐amino acid (β‐Phe11), reduced amide bond (Thr10‐Ψ[NH]‐Phe11), or N‐methylated amino acid (N‐Me‐Phe11). Two of the new peptidomimetics were more stable in blood plasma in vitro than [111In]In‐XG1. Yet none of them retained high affinity towards SST2R. We demonstrate for the first time the combination of the amide‐to‐triazole substitution strategy with alternative stabilization methods to improve the metabolic stability of tumor‐targeting peptides.