Contour‐guided deep learning based deformable image registration for dose monitoring during CBCT‐guided radiotherapy of prostate cancer

Author:

Hemon Cédric1,Rigaud Bastien1ORCID,Barateau Anais1,Tilquin Florian1,Noblet Vincent2ORCID,Sarrut David3ORCID,Meyer Philippe4,Bert Julien5ORCID,De Crevoisier Renaud1,Simon Antoine1ORCID

Affiliation:

1. Univ Rennes, CLCC Eugène Marquis, INSERM, LTSI – UMR 1099 Rennes France

2. Laboratoire des sciences de l'ingénieur de l'informatique et de l'imagerie ICube UMR 7357 Illkirch‐Graffenstaden France

3. Université de Lyon CREATIS, CNRS UMR5220 Inserm U1294 INSA‐Lyon Université Lyon 1 Lyon France

4. Department of Medical Physics Paul Strauss Center Strasbourg France

5. Faculty of Medicine LaTIM, INSERM UMR 1101, IBRBS, Univ Brest Brest France

Abstract

AbstractPurposeTo evaluate deep learning (DL)‐based deformable image registration (DIR) for dose accumulation during radiotherapy of prostate cancer patients.Methods and MaterialsData including 341 CBCTs (209 daily, 132 weekly) and 23 planning CTs from 23 patients was retrospectively analyzed. Anatomical deformation during treatment was estimated using free‐form deformation (FFD) method from Elastix and DL‐based VoxelMorph approaches. The VoxelMorph method was investigated using anatomical scans (VMorph_Sc) or label images (VMorph_Msk), or the combination of both (VMorph_Sc_Msk). Accumulated doses were compared with the planning dose.ResultsThe DSC ranges, averaged for prostate, rectum and bladder, were 0.60–0.71, 0.67–0.79, 0.93–0.98, and 0.89–0.96 for the FFD, VMorph_Sc, VMorph_Msk, and VMorph_Sc_Msk methods, respectively. When including both anatomical and label images, VoxelMorph estimated more complex deformations resulting in heterogeneous determinant of Jacobian and higher percentage of deformation vector field (DVF) folding (up to a mean value of 1.90% in the prostate). Large differences were observed between DL‐based methods regarding estimation of the accumulated dose, showing systematic overdosage and underdosage of the bladder and rectum, respectively. The difference between planned mean dose and accumulated mean dose with VMorph_Sc_Msk reached a median value of +6.3 Gy for the bladder and −5.1 Gy for the rectum.ConclusionThe estimation of the deformations using DL‐based approach is feasible for male pelvic anatomy but requires the inclusion of anatomical contours to improve organ correspondence. High variability in the estimation of the accumulated dose depending on the deformable strategy suggests further investigation of DL‐based techniques before clinical deployment.

Publisher

Wiley

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Radiation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3