Deep‐learning‐based joint rigid and deformable contour propagation for magnetic resonance imaging‐guided prostate radiotherapy

Author:

Kolenbrander Iris D.12,Maspero Matteo34,Hendriksen Allard A.5,Pollitt Ryan1,van der Voort van Zyp Jochem R. N.4,van den Berg Cornelis A. T.34,Pluim Josien P. W.12,van Eijnatten Maureen A. J. M.12

Affiliation:

1. Medical Image Analysis Group, Department of Biomedical Engineering Eindhoven University of Technology Eindhoven The Netherlands

2. Eindhoven Artificial Intelligence Systems Institute Eindhoven University of Technology Eindhoven The Netherlands

3. Computational Imaging Group for MR Diagnostics & Therapy Center for Image Sciences University Medical Center Utrecht Utrecht The Netherlands

4. Department of Radiotherapy University Medical Center Utrecht Utrecht The Netherlands

5. Computational Imaging Centrum Wiskunde & Informatica Amsterdam The Netherlands

Abstract

AbstractBackgroundDeep learning‐based unsupervised image registration has recently been proposed, promising fast registration. However, it has yet to be adopted in the online adaptive magnetic resonance imaging‐guided radiotherapy (MRgRT) workflow.PurposeIn this paper, we design an unsupervised, joint rigid, and deformable registration framework for contour propagation in MRgRT of prostate cancer.MethodsThree‐dimensional pelvic T2‐weighted MRIs of 143 prostate cancer patients undergoing radiotherapy were collected and divided into 110, 13, and 20 patients for training, validation, and testing. We designed a framework using convolutional neural networks (CNNs) for rigid and deformable registration. We selected the deformable registration network architecture among U‐Net, MS‐D Net, and LapIRN and optimized the training strategy (end‐to‐end vs. sequential). The framework was compared against an iterative baseline registration. We evaluated registration accuracy (the Dice and Hausdorff distance of the prostate and bladder contours), structural similarity index, and folding percentage to compare the methods. We also evaluated the framework's robustness to rigid and elastic deformations and bias field perturbations.ResultsThe end‐to‐end trained framework comprising LapIRN for the deformable component achieved the best median (interquartile range) prostate and bladder Dice of 0.89 (0.85–0.91) and 0.86 (0.80–0.91), respectively. This accuracy was comparable to the iterative baseline registration: prostate and bladder Dice of 0.91 (0.88–0.93) and 0.86 (0.80–0.92). The best models complete rigid and deformable registration in 0.002 (0.0005) and 0.74 (0.43) s (Nvidia Tesla V100‐PCIe 32 GB GPU), respectively. We found that the models are robust to translations up to 52 mm, rotations up to 15, elastic deformations up to 40 mm, and bias fields.ConclusionsOur proposed unsupervised, deep learning‐based registration framework can perform rigid and deformable registration in less than a second with contour propagation accuracy comparable with iterative registration.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3