Design, synthesis, and biological evaluation of novel pleuromutilin derivatives containing benzimidazoles as effective anti‐MRSA agents

Author:

Zhang Qi‐Wen1,Ren Jie1,Lu Jia‐Xun1,Chen Xiao‐Ying1,He Xian‐Jin1,Wang Qi1,Zhou Zi‐Dan1,Jin Zhen12,Zeng Zhen‐Ling12,Tang You‐Zhi12ORCID

Affiliation:

1. Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine South China Agricultural University Guangzhou China

2. Guangdong Laboratory for Lingnan Modern Agriculture Guangzhou China

Abstract

AbstractA series of pleuromutilin derivatives containing benzimidazole were designed, synthesized, and evaluated for their antibacterial activities against Methicillin‐resistant Staphylococcus aureus (MRSA) in this study. The in vitro antibacterial activities of the synthesized derivatives against four strains of S. aureus (MRSA ATCC 43300, S. aureus ATCC 29213, S. aureus 144, and S. aureus AD3) were determined by the broth dilution method. Among these derivatives, compound 58 exhibited superior in vitro antibacterial effect against MRSA (minimal inhibitory concentration [MIC] = 0.0625 μg/mL) than tiamulin (MIC = 0.5 μg/mL). Compound 58 possessed a faster bactericidal kinetic and a longer post‐antibiotic effect time against MRSA than tiamulin. Meanwhile, at 8 μg/mL concentration, compound 58 did not display obviously cytotoxic effect on the RAW 264.7 cells. In addition, compound 58 (−2.04 log10 CFU/mL) displayed superior in vivo antibacterial efficacy than tiamulin (−1.02 log10 CFU/mL) in reducing MRSA load in mice thigh infection model. In molecular docking study, compound 58 can successfully attach to the 50S ribosomal active site (the binding free energy is −8.11 kcal/mol). Therefore, compound 58 was a potential antibacterial candidate for combating MRSA infections.

Publisher

Wiley

Subject

Drug Discovery

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3