Bayesian hierarchical models incorporating study‐level covariates for multivariate meta‐analysis of diagnostic tests without a gold standard with application to COVID‐19

Author:

Wang Zheng1ORCID,Murray Thomas A1ORCID,Xiao Mengli2,Lin Lifeng3ORCID,Alemayehu Demissie4,Chu Haitao14ORCID

Affiliation:

1. Division of Biostatistics School of Public Health, University of Minnesota Minneapolis Minnesota USA

2. Department of Biostatistics and Informatics University of Colorado Anschutz Medical Campus Aurora Colorado USA

3. Department of Epidemiology and Biostatistics University of Arizona Tucson Arizona USA

4. Global Biometrics and Data Management Pfizer Inc. New York New York USA

Abstract

When evaluating a diagnostic test, it is common that a gold standard may not be available. One example is the diagnosis of SARS‐CoV‐2 infection using saliva sampling or nasopharyngeal swabs. Without a gold standard, a pragmatic approach is to postulate a “reference standard,” defined as positive if either test is positive, or negative if both are negative. However, this pragmatic approach may overestimate sensitivities because subjects infected with SARS‐CoV‐2 may still have double‐negative test results even when both tests exhibit perfect specificity. To address this limitation, we propose a Bayesian hierarchical model for simultaneously estimating sensitivity, specificity, and disease prevalence in the absence of a gold standard. The proposed model allows adjusting for study‐level covariates. We evaluate the model performance using an example based on a recently published meta‐analysis on the diagnosis of SARS‐CoV‐2 infection and extensive simulations. Compared with the pragmatic reference standard approach, we demonstrate that the proposed Bayesian method provides a more accurate evaluation of prevalence, specificity, and sensitivity in a meta‐analytic framework.

Funder

National Center for Advancing Translational Sciences

National Institute of Mental Health

U.S. National Library of Medicine

Publisher

Wiley

Subject

Statistics and Probability,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3