AliNA – a deep learning program for RNA secondary structure prediction

Author:

Nasaev Shamsudin S.1ORCID,Mukanov Artem R.2,Kuznetsov Ivan I.3,Veselovsky Alexander V.1

Affiliation:

1. Institute of Biomedical Chemistry 10, Pogodinskaya str. 119121 Moscow Russia

2. A.M. Butlerov Institute of Chemistry Kazan Federal University 18, Kremlyovskaya str. 420008 Kazan Russia

3. Moscow University of Finance and Law 10 block 1, Serpuhovsky val str. 115191 Moscow Russia

Abstract

AbstractNowadays there are numerous discovered natural RNA variations participating in different cellular processes and artificial RNA, e. g., aptamers, riboswitches. One of the required tasks in the investigation of their functions and mechanism of influence on cells and interaction with targets is the prediction of RNA secondary structures. The classic thermodynamic‐based prediction algorithms do not consider the specificity of biological folding and deep learning methods that were designed to resolve this issue suffer from homology‐based methods problems. Herein, we present a method for RNA secondary structure prediction based on deep learning – AliNA (ALIgned Nucleic Acids). Our method successfully predicts secondary structures for non‐homologous to train‐data RNA families thanks to usage of the data augmentation techniques. Augmentation extends existing datasets with easily‐accessible simulated data. The proposed method shows a high quality of prediction across different benchmarks including pseudoknots. The method is available on GitHub for free (https://github.com/Arty40m/AliNA).

Publisher

Wiley

Subject

Organic Chemistry,Computer Science Applications,Drug Discovery,Molecular Medicine,Structural Biology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3