sincFold: end-to-end learning of short- and long-range interactions in RNA secondary structure

Author:

Bugnon Leandro A1,Di Persia Leandro1,Gerard Matias1,Raad Jonathan1,Prochetto Santiago12,Fenoy Emilio1,Chorostecki Uciel3,Ariel Federico2,Stegmayer Georgina1,Milone Diego H1

Affiliation:

1. Ciudad Universitaria UNL Research Institute for Signals, Systems and Computational Intelligence, sinc(i), FICH-UNL, CONICET, , 3000, Santa Fe, Argentina

2. Instituto de Agrobiotecnología del Litoral , CONICET-UNL, CCT-Santa Fe, Ruta Nacional N° 168 Km 0, s/n, Paraje el Pozo, 3000, Santa Fe, Argentina

3. Universitat Internacional de Catalunya Faculty of Medicine and Health Sciences, , Barcelona, Spain

Abstract

Abstract Motivation Coding and noncoding RNA molecules participate in many important biological processes. Noncoding RNAs fold into well-defined secondary structures to exert their functions. However, the computational prediction of the secondary structure from a raw RNA sequence is a long-standing unsolved problem, which after decades of almost unchanged performance has now re-emerged due to deep learning. Traditional RNA secondary structure prediction algorithms have been mostly based on thermodynamic models and dynamic programming for free energy minimization. More recently deep learning methods have shown competitive performance compared with the classical ones, but there is still a wide margin for improvement. Results In this work we present sincFold, an end-to-end deep learning approach, that predicts the nucleotides contact matrix using only the RNA sequence as input. The model is based on 1D and 2D residual neural networks that can learn short- and long-range interaction patterns. We show that structures can be accurately predicted with minimal physical assumptions. Extensive experiments were conducted on several benchmark datasets, considering sequence homology and cross-family validation. sincFold was compared with classical methods and recent deep learning models, showing that it can outperform the state-of-the-art methods.

Funder

AWS Cloud Credit for Research, the Ministerio de Producción, Ciencia y Tecnología, Santa Fe

Agencia Nacional de Promoción de la Investigación, el Desarrollo Tecnológico y la Innovación

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3