Regulating Phase Transition and Oxygen Redox to Achieve Stable High‐Voltage O3‐Type Cathode Materials for Sodium‐Ion Batteries

Author:

Zhang Kai1,Xu Zhenming2,Li Guodong1,Luo Rui‐Jie3,Ma Cui3,Wang Yonggang1,Zhou Yong‐Ning3,Xia Yongyao14

Affiliation:

1. Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Institute of New Energy iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Fudan University Shanghai 200433 China

2. College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016 China

3. Department of Materials Science Fudan University Shanghai 200433 China

4. Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science Zhejiang Normal University Jinhua 321004 China

Abstract

AbstractO3‐type layered oxides are promising cathode materials for sodium‐ion batteries. However, unsatisfying cyclic stability hinders its practical application, mainly resulting from harmful phase transition and irreversible oxygen redox, especially in high‐voltage regions. Herein, a co‐doped strategy by incorporating Li+, Mg2+, Ca2+, and Sb5+ into the O3‐Na0.8Ni0.4Fe0.2Mn0.4O2 cathode materials is proposed. Both suppressing the undesired phase transition over 4.1 V (vs Na/Na+) and reducing the anisotropic strain are achieved with the novel Na0.8Ni0.3Fe0.2Mn0.3Li0.1Mg0.02Ca0.05Sb0.03O2 (LMCS NFM). Moreover, restricted but highly reversible oxygen redox is observed due to strong attraction from Sb5+ and special “Li–O‐vacancy” and “Mg–O‐vacancy” configurations. The strategy brings about excellent high‐voltage cyclic stability with a reversible capacity of 130 mAh g−1 and a capacity retention of 85% after 250 cycles at 4.2 V, and less thermal runaway risk and moisture sensitivity, increasing the probability of O3‐type oxide cathode practical applications.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3