W‐Doping Induced Efficient Tunnel‐to‐Layered Structure Transformation of Na0.44Mn1‐xWxO2: Phase Evolution, Sodium‐Storage Properties, and Moisture Stability

Author:

Ding Qin1,Zheng Wanhao1,Zhao Along1,Zhao Yanan1,Chen Kean1,Zhou Xi1,Zhang Haiyan2,Li Qingyu3,Ai Xinping1,Yang Hanxi1,Fang Yongjin1ORCID,Cao Yuliang1ORCID

Affiliation:

1. Hubei Key Laboratory of Electrochemical Power Sources College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China

2. Guangdong Engineering Laboratory of Energy Storage Materials and Devices School of Materials and Energy Guangdong University of Technology Guangzhou 510006 China

3. Guangxi Key Laboratory of Low Carbon Energy Materials School of Chemistry and Pharmaceutical Sciences Guangxi Normal University Guilin 541004 China

Abstract

AbstractNa0.44MnO2 is a promising cathode material for sodium‐ion batteries owing to its excellent cycling stability and low cost. However, insufficient sodium storage sites still hinder its practical applications. Herein, a facile strategy to induce the efficient structural transformation from the tunnel to the layered type of Na0.44MnO2 by trace W‐doping for the first time is reported. The W‐doping not only enriches the sodium storage sites but also improves the cycling performance. As a result, the phase‐pure P2‐Na0.44Mn0.99W0.01O2 demonstrates an enhanced reversible specific capacity of 195.5 mAh g−1 and energy density of 517 Wh kg−1 at 0.1 C, accompanying superior cycling stability with capacity retention of 80% over 200 cycles. Moreover, the W‐doped samples show high structure stability in a moist atmosphere and can still maintain the original electrochemical performance after water treatment. In situ and ex situ characterizations reveal the enhanced structural stability of the P2‐Na0.44Mn0.99W0.01O2 electrodes. This work provides a facile strategy on the structural engineering of transition metal oxides to induce the tunnel‐to‐layered structure transformation and could shed light on the design and construction of stable and high‐capacity cathode materials.

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3