Affiliation:
1. School of Materials Science and Engineering Nanjing University of Science and Technology Nanjing 210094 China
2. Department of Physics University of Jhang Jhang Punjab 35200 Pakistan
3. School of Chemistry and Materials Science Nanjing University of Information Science and Technology Nanjing 210044 China
Abstract
AbstractNa0.44MnO2 with tunnel structure is considered a promising low‐cost cathode material for sodium‐ion batteries. However, the sluggish Na+ transport kinetics and low initial Coulombic efficiency restrict its practical applications in rechargeable sodium‐ion batteries. Herein, a manganese‐based tunnel‐structured cathode with high rate capability and high initial Coulombic efficiency is prepared by niobium doping and sodium compensation. Via materials characterizations and theoretical calculations, it is demonstrated that a proper amount of niobium doping in tunnel structure can effectively improve its structural stability and charge transport kinetics, resulting in outstanding rate capability (76.6% capacity retained from 0.5 to 30 C) and superior cycling performance (82.3% capacity retention after 800 cycles at 5 C) for the optimized Nb‐doped Na0.44MnO2 cathode (Na0.44Mn0.98Nb0.02O2). Furthermore, NaCrO2 is added into the Na0.44Mn0.98Nb0.02O2 cathode as a self‐sacrificing sodium compensation additive, and a high initial Coulombic efficiency close to 100% is achieved for the composite cathode. This work establishes a facile strategy to design advanced manganese‐based cathode materials for large‐scale energy storage applications.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province