7.9 µm Turing Membranes with High Ion Conductivity for High Power Density Zinc‐Based Flow Battery

Author:

Wu Jine12ORCID,Liao Chenyi3,Li Tianyu1,Lu Wenjing1,Xu Wei4,Ye Bangjiao4,Li Guohui3,Zhang Hongjun4ORCID,Li Xianfeng1ORCID

Affiliation:

1. Division of Energy Storage Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China

2. School of Chemical Science University of Chinese Academy of Sciences Beijing 100049 China

3. Laboratory of Molecular Modeling and Design State Key Laboratory of Molecular Reaction Dynamics Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China

4. State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China Hefei 230026 China

Abstract

AbstractIon conductive membranes with rapid and selective ion transport are in high demand for high‐power energy storage devices. Surface periodic Turing microstructures are scientifically compelling for their high specific surface area which can promote ion transport of membranes. Here, high‐conductivity thin Turing membranes prepared by Co2+ coordination with polybenzimidazole (OPBI) are designed and their efficient ion transport in the alkaline zinc‐iron flow battery (AZIFB) is demonstrated. In this design, the Turing structure increases the effective contact area with the electrolyte, and the 7.9 µm thickness shortens the transmembrane pathway for ions. Molecular dynamics simulations further show that Co2+‐coordination enlarges the inner‐chain volume of membranes and forms continuous water channels for rapid ion transport. The boosting effect of membranes with high ion conductivity is proven by the peak power density and energy efficiency of the AZIFB, which shows an ultrahigh peak power density of 1147 mW cm−2 and demonstrates an energy efficiency of 80% even at a high current density of 200 mA cm−2.

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3