A Universal Coulombic Efficiency Compensation Strategy for Zinc‐Based Flow Batteries

Author:

Huang Shiqiang1,Li Mengxiao1,Song Yuxi1,Xi Shibo2,Wu Chao2,Ang Zhi Wei Javier1,Wang Qing134ORCID

Affiliation:

1. Department of Materials Science and Engineering National University of Singapore Singapore 117576 Singapore

2. Institute of Sustainability for Chemicals Energy and Environment (ISCE2) Singapore 627833 Singapore

3. Centre for Hydrogen Innovations National University of Singapore Singapore 117580 Singapore

4. National University of Singapore (Suzhou) Research Institute Suzhou Jiangsu 215123 P. R. China

Abstract

AbstractAlkaline zinc‐iron flow batteries (AZIFBs) are well suited for energy storage because of their good safety, high cell voltage, and low cost. However, the occurrence of irreversible anodic parasitic reactions results in a diminished coulombic efficiency (CE), unbalanced charge state of catholyte/anolyte and subsequently, a poor cycling performance. Here, a universal CE compensation strategy centered around the oxygen evolution reaction (OER) on the cathodic side, is reported. This strategy aims to equalize the charge state of the [Fe(CN)6]3‐/4−‐based catholyte and counteract pH fluctuations. The OER process can be implemented either directly on the electrode through electrochemical reaction or in an external catalytic reactor column via a redox‐mediated process. This innovative approach effectively mitigates the gradual accumulation of [Fe(CN)6]3− in discharged catholyte and [Zn(OH)4]2− in charged anolyte by consuming the extra OH during a continuous cycling process. As a result, AZIFBs demonstrate exceptional cycling performance with an extremely low capacity fading rate of 0.0128%/day (or 0.0005%/cycle) over 600 cycles at 80% state of charge (SOC). The proposed CE compensation strategy not only provides an effective way to address the CE loss issue for AZIFBs, but also can be applied to diverse battery technologies encountering CE loss caused by water/oxygen‐induced parasitic reactions.

Funder

National University of Singapore

Advanced Research and Technology Innovation Centre, College of Design and Engineering, National University of Singapore

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3