Visualizing Reaction Fronts and Transport Limitations in Solid‐State Li–S Batteries via Operando Neutron Imaging

Author:

Bradbury Robert12ORCID,Dewald Georg F.34,Kraft Marvin A.5ORCID,Arlt Tobias1ORCID,Kardjilov Nikolay2ORCID,Janek Jürgen34ORCID,Manke Ingo2ORCID,Zeier Wolfgang G.56ORCID,Ohno Saneyuki7ORCID

Affiliation:

1. Institute for Materials Science and Technologies Technische Universität Berlin Straße des 17, Juni 135 10623 Berlin Germany

2. Helmholtz‐Zentrum Berlin für Materialien und Energie (HZB) Hahn Meitner Platz 1 D‐14109 Berlin Germany

3. Institute of Physical Chemistry Justus‐Liebig‐University Gießen Heinrich‐Buff‐Ring 17 D‐35392 Gießen Germany

4. Center for Materials Research (LaMa) Justus‐Liebig‐University Gießen Heinrich‐Buff‐Ring 16 D‐35392 Gießen Germany

5. Institute of Inorganic and Analytical Chemistry University of Münster Correnstrasse 30 48149 Muenster Germany

6. Institut für Energie‐ und Klimaforschung (IEK) IEK‐12: Helmholtz‐Institut Münster Forschungszentrum Jülich 48149 Münster Germany

7. Department of Applied Chemistry Graduate School of Engineering Kyushu University 744 Motooka Nishi‐ku Fukuoka 819‐0395 Japan

Abstract

AbstractThe exploitation of high‐capacity conversion‐type materials such as sulfur in solid‐state secondary batteries is a dream combination for achieving improved battery safety and high energy density in the push toward a sustainable future. However, the exact reason behind the low rate‐capability, bottlenecking further development of solid‐state lithium–sulfur batteries, has not yet been determined. Here, using neutron imaging, the spatial distribution of lithium during cell operation is directly visualized and it is shown that sluggish macroscopic ion transport within the composite cathode is rate‐limiting. Observing a reaction front propagating from the separator side toward the current collector confirms the detrimental influence of a low effective ionic conductivity. Furthermore, irreversibly concentrated lithium in the vicinity of the current collector, revealed via state‐of‐charge‐dependent tomography, highlights a hitherto‐overlooked loss mechanism triggered by sluggish effective ionic transport within a composite cathode. This discovery can be a cornerstone for future research on solid‐state batteries, irrespective of the type of active material.

Funder

Alexander von Humboldt-Stiftung

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3