Halogenated Hole Selective Contact Enhances Interfacial Weak Bonding of Perovskite Solar Cells

Author:

Wang Aili1,Zhai Mengde2,Du Kaihuai1,Yang Jinman2,Zhang Luozheng1,Li Bairu1,Luo Long1,Dong Xu1,Li Lvzhou1,Li Guixiang3ORCID,Li Meng4,Abate Antonio3,Cheng Ming2,Ding Jianning1

Affiliation:

1. Institute of Technology for Carbon Neutralization School of Mechanical Engineering Yangzhou University Yangzhou Jiangsu 225127 P. R. China

2. Institute for Energy Research Jiangsu University Zhenjiang 212013 P. R. China

3. Helmholtz‐Zentrum Berlin für Materialien und Energie GmbH Hahn‐Meitner‐Platz 1 14109 Berlin Germany

4. Key Lab for Special Functional Materials of Ministry of Education National & Local Joint Engineering Research Center for High‐efficiency Display and Lighting Technology School of Materials Science and Engineering Collaborative Innovation Center of Nano Functional Materials and Applications Henan University Kaifeng 475004 P. R. China

Abstract

AbstractWeak bonding between the perovskite and charge transport layers can lead to interfacial defects, hindering charge transfer and limiting the efficiency and stability of perovskite solar cells (PSCs). To address this issue, two halogenated spiro[fluorene‐9,9′‐xanthene]‐based molecules (SFX‐DM‐F and SFX‐DM‐Cl) are designed as an interfacial layer between perovskite and hole transport materials (HTMs). Both first‐principles simulations and experimental results are used to demonstrate that these halogenated interfacial layers improve the contact stability between perovskite's Pb(II) and HTMs, increasing the efficiency of charge transfer. The similar structure of interlayer to HTM also enhances the interfacial hole transfer integral, favoring effective hole transport. The PSCs based on SFX‐DM‐Cl achieve power conversion efficiencies of 24.8% (0.0625 cm2) and 23.1% (1 cm2). Even after 2000 h at a relative humidity of 15–20%, the unencapsulated PSC retains 94% of its initial efficiency. This work proposes the halogenated homologous HTMs as interfacial molecular bridges to optimize weak chemical bonds and hole transfer, thereby enabling efficient and stable PSCs.

Funder

National Natural Science Foundation of China

Major Technology Innovation Projects of Jiangsu Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3