Ordered and Isolated Pd Sites Endow Antiperovskite‐Type PdFe3N with High CO‐Tolerance for Formic Acid Electrooxidation

Author:

Liang Lecheng1,Li Meng2,Zhang Bentian3,Liang Jinhui1,Zeng Binwen1,Wang Liming1,Tang Yawen2,Fu Gengtao2,Cui Zhiming1ORCID

Affiliation:

1. The Key Laboratory of Fuel Cell Technology of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 P. R. China

2. Jiangsu Key Laboratory of New Power Batteries Jiangsu Collaborative Innovation Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 P. R. China

3. College of Chemistry and Materials Engineering Anhui Science and Technology University Bengbu 233100 P. R. China

Abstract

AbstractThe fundamental understanding and precise control of catalytic sites are challenging yet essential to explore advanced electrocatalysts for the formic acid oxidation reaction (FAOR). Herein, this work demonstrates a new and promising catalyst prototype of antiperovskite‐type PdFe3N which possesses ordered and isolated Pd sites. The as‐synthesized PdFe3N/N‐rGO exhibits significant enhancement in catalytic activity, robust stability, and Fe anti‐dissolution properties when compared with PdFe3/rGO and Pd/C. Density functional theory (DFT) calculations reveal that isolated and ordered Pd sites are beneficial for high formate coverage and thus suppressing CO formation/poisoning. Moreover, the strong Fe–N covalent bonds improve the vacancy formation energy of Fe, which ensures superior Fe anti‐dissolution properties. Beyond offering a promising candidate for catalyzing FAOR, these findings provide deeper insights into the structure of CO tolerance relationships and benefit the theory‐guided design of highly efficient catalysts.

Funder

National Natural Science Foundation of China

State Key Laboratory of Electroanalytical Chemistry

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3