Bimetallic PdFe3 Nano‐Alloy with Tunable Electron Configuration for Boosting Electrochemical Nitrogen Fixation

Author:

Mu Jianjia1,Zhao Zhiwei2,Gao Xuan‐Wen1,Liu Zhao‐Meng1,Luo Wen‐Bin1,Sun Zhenhua3,Gu Qin‐Fen4,Li Feng3ORCID

Affiliation:

1. Institute for Energy Electrochemistry and Urban Mines Metallurgy School of Metallurgy Northeastern University Shenyang Liaoning 110819 China

2. Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China

3. Institute of Metal Research Chinese Academy of Sciences Shenyang Liaoning 110819 China

4. Australian Synchrotron (ANSTO) 800 Blackburn Rd Clayton Victoria 3168 Australia

Abstract

AbstractElectrocatalyst plays animportant role in electrochemical ammonia synthesis by determining the nitrogen reduction reaction pathway. Featuring the inherent half‐filled 3d orbitals, ion‐based alloy electrocatalysts have been attracting much more attention owing to the controllable driving force to adsorb and activate N≡N bonds. Besides supplying unoccupied d‐orbital to accommodate lone‐pair electrons to facilitate nitrogen adsorption, donating d‐orbital electrons to nitrogen antibonding orbitals to dissociate N≡N bond is demandedas well. By palladium (Pd) to synthesize PdFe3 nano‐alloy, numerous Fe 3d orbitals can be reconstructed via charge polarization between Fe and Pd, simultaneously lowering corresponding work functions. Meanwhile, the positively charged Fesites in PdFe3 can strengthen suppress the proton adsorption by electrostatic repulsion. A considerably optimized ammonia production rate of 29.07 µg h−1 mgcat.−1 and Faradic efficiency of 22.8% are accomplished at a low overpotential of −0.2 V vs. RHE. Density functional theory combined with in‐situ ATR‐FTIR results confirmthe electrocatalytic nitrogen reduction follows the associative distalmechanism and the electron‐deficient Fe induced through Pd facilitates significantly lowering the first‐step‐protonation energy barrier of only 0.07 eV (*N2 + *H →*NNH).

Funder

National Natural Science Foundation of China

Liaoning Revitalization Talents Program

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3