Solvent‐Mediated Synthesis of Functional Powder Materials from Deep Eutectic Solvents for Energy Storage and Conversion: A Review

Author:

Deng Rongrong1,Gao Mingyuan1,Zhang Bo1,Zhang Qibo12ORCID

Affiliation:

1. Key Laboratory of Ionic Liquids Metallurgy Faculty of Metallurgical and Energy Engineering Kunming University of Science and Technology No.68 WenChang Road, 121 Street Kunming 650093 P. R. China

2. State Key Laboratory of Complex Nonferrous Metal Resources Cleaning Utilization in Yunnan Province Kunming 650093 P. R. China

Abstract

AbstractDeveloping advanced electrochemical energy storage and conversion (ESC) technologies based on renewable clean energy can alleviate severe global environmental pollution and energy crisis. The efficient preparation of functional electrode materials via a simple, green, and safe synthesis process is the key to the commercial feasibility of these ESC systems. Deep eutectic solvents (DESs) with easy‐tunable solvent properties and recyclable features have emerged as novel solvent systems for designing and synthesizing various functional powder materials for ESC devices. In this paper, the application of DESs in the synthesis of energy‐related functional powder materials is systematically reviewed. After briefly introducing the classification and synthesis of DESs, their critical roles in synthesizing powder materials are discussed. Then, the recent advances of DES‐derived powder materials in ESC, including batteries, fuel cells, supercapacitors, and water splitting, are described in detail from the perspective of preparation‐structure‐activity. Finally, some challenges and development directions of the DESs‐mediated synthesis of powder materials with high electrochemical performance for ESC applications are outlined.

Funder

National Natural Science Foundation of China

Yunan Ten Thousand Talents Plan Young and Elite Talents Project

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3