Semiconductor Electrochemistry for Clean Energy Conversion and Storage

Author:

Zhu Bin,Fan Liangdong,Mushtaq Naveed,Raza Rizwan,Sajid Muhammad,Wu Yan,Lin Wenfeng,Kim Jung-Sik,Lund Peter D.,Yun Sining

Abstract

AbstractSemiconductors and the associated methodologies applied to electrochemistry have recently grown as an emerging field in energy materials and technologies. For example, semiconductor membranes and heterostructure fuel cells are new technological trend, which differ from the traditional fuel cell electrochemistry principle employing three basic functional components: anode, electrolyte, and cathode. The electrolyte is key to the device performance by providing an ionic charge flow pathway between the anode and cathode while preventing electron passage. In contrast, semiconductors and derived heterostructures with electron (hole) conducting materials have demonstrated to be much better ionic conductors than the conventional ionic electrolytes. The energy band structure and alignment, band bending and built-in electric field are all important elements in this context to realize the necessary fuel cell functionalities. This review further extends to semiconductor-based electrochemical energy conversion and storage, describing their fundamentals and working principles, with the intention of advancing the understanding of the roles of semiconductors and energy bands in electrochemical devices for energy conversion and storage, as well as applications to meet emerging demands widely involved in energy applications, such as photocatalysis/water splitting devices, batteries and solar cells. This review provides new ideas and new solutions to problems beyond the conventional electrochemistry and presents new interdisciplinary approaches to develop clean energy conversion and storage technologies. Graphic Abstract

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Research Grant for Scientific Platform and Project of Guangdong Provincial Education office

Science and Technology Planning Project of Shenzhen Municipality

National Laboratory of Solid State Microstructures, Nanjing University

the Royal Society and the Newton Fund

Key Program for International S&T Cooperation Projects of Shaanxi Province

Hubei Provincial 100-Talent Distinguished Professor Grant

Publisher

Springer Science and Business Media LLC

Subject

Electrochemistry,Energy Engineering and Power Technology,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3