Dynamics of the Lithium Metal Electrodeposition: Effects of a Gas Bubble

Author:

Jin Shoutong1,Zhou Linming1,Wu Yongjun12,Zhu Shang3,Zhang Qilong1,Yang Hui1,Huang Yuhui14,Hong Zijian124ORCID

Affiliation:

1. School of Materials Science and Engineering Zhejiang University Hangzhou Zhejiang 310027 China

2. Cyrus Tang Center for Sensor Materials and Applications State Key Laboratory of Silicon and Advanced Semiconductor Materials Zhejiang University Hangzhou Zhejiang 310027 China

3. Department of Mechanical Engineering Carnegie Mellon University Pittsburgh PA 15213 USA

4. Research Institute of Zhejiang University‐Taizhou Taizhou Zhejiang 318000 China

Abstract

AbstractUnderstanding the dynamics of lithium metal electrodeposition is crucial to designing safe and reliable lithium metal anodes. In this study, a grand potential‐based phase‐field model is developed to investigate the effect of a gas bubble (which forms due to the internal side reactions) on the dynamics of the dendrite growth during electrodeposition. It is observed that with the presence of a static gas bubble, the dendrite growth is largely accelerated, owing to the accumulation of lithium ions on the far side of the bubble away from the anode surface, which can serve as an ion “reservoir” for the dendrite growth, leading to the tilting of the lithium dendrites toward the bubble. The effects of the bubble size and distance to the anode are further studied, demonstrating that the larger the bubble size and the closer to the anode, the longer the lithium dendrites will grow. Notably, with a mobile bubble, the dendrite growth can be delayed due to the “stirring effect,” where the motion of the bubble can facilitate the ion migration. This effect is maximized when the bubble moving speed is close to the electrodeposition speed. It is hoped that this study can serve as an example to exploit the effect of extrinsic factors on the dendrite growth dynamics.

Funder

Zhejiang University

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3