Macroscale Inhomogeneity in Electrochemical Lithium‐Metal Plating Triggered by Electrolyte‐Dependent Gas Phase Evolution

Author:

Kim Kyoungoh1,Ko Youngmin2,Tamwattana Orapa1,Kim Youngsu1,Kim Jihyeon1,Park Jooha1,Han Sangwook1,Lee Young‐Ro1,Kang Kisuk1345ORCID

Affiliation:

1. Department of Materials Science and Engineering Seoul National University 1 Gwanak‐ro, Gwanak‐gu Seoul 08826 Republic of Korea

2. The Molecular Foundry Lawrence Berkeley National Laboratory Berkeley CA 94720 USA

3. School of Chemical and Biological Engineering Seoul National University 1 Gwanak‐ro, Gwanak‐gu Seoul 08826 Republic of Korea

4. Institute of Engineering Research College of Engineering Seoul National University 1 Gwanak‐ro Gwanak‐gu Seoul 08826 Republic of Korea

5. Center for Nanoparticle Research Institute of Basic Science Seoul National University 1 Gwanak‐ro Gwanak‐gu Seoul 08826 Republic of Korea

Abstract

AbstractPromoting homogeneous electrode reactions is crucial for mitigating premature electrode degradation and achieving enhanced cycle stability. This is particularly important for lithium‐metal electrodes that undergo drastic morphological change during electrochemical cycles, as their failure can result in dendritic lithium growth and safety hazards. Extensive prior studies have focused on managing the nano‐/micro‐scale dendritic lithium formations, and proposed the importance of the electrolyte engineering in tailoring the solid‐electrolyte interphase. Herein, this study demonstrates, for the first time, that the macroscale inhomogeneity during lithium plating, comparable to the size of electrode, is also governed by the electrolyte, but, strikingly, this phenomenon stands independent of the propensity of the electrolyte to promote growth of nano‐/micro‐scale lithium dendrites. In situ probe reveals that this electrode‐level inhomogeneity, which occurs irrespective of lithium dendrite formation, is triggered by gas‐generating reactions influenced by the electrolyte composition, and the subsequent gas‐phase (i.e., bubble) evolution causes localized lithium growth. The restricted lithium‐ion mass transport through these bubbles increases the overpotential, which exacerbates the macroscale inhomogeneity, as supported by experimental results and continuum model simulations. The observation of electrolyte‐dependent macroscale lithium inhomogeneity highlights the importance of adopting a multi‐scale perspective when considering control strategies for achieving homogeneity during lithium deposition/stripping processes.

Funder

National Research Foundation of Korea

Hyundai Motor Group

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3