Origin and hysteresis of lithium compositional spatiodynamics within battery primary particles

Author:

Lim Jongwoo12,Li Yiyang1,Alsem Daan Hein3,So Hongyun4,Lee Sang Chul1,Bai Peng5,Cogswell Daniel A.5,Liu Xuzhao1,Jin Norman1,Yu Young-sang6,Salmon Norman J.3,Shapiro David A.6,Bazant Martin Z.1578,Tyliszczak Tolek6,Chueh William C.12

Affiliation:

1. Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA.

2. Stanford Institute for Materials & Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.

3. Hummingbird Scientific, Lacey, WA 98516, USA.

4. Department of Aeronautics and Astronautics, Stanford University, Stanford, CA 94305, USA.

5. Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

6. Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

7. Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

8. SUNCAT Interfacial Science and Catalysis, Stanford University, Stanford, CA 94305, USA.

Abstract

Watching batteries fail Rechargeable batteries lose capacity in part because of physical changes in the electrodes caused by electrochemical cycling. Lim et al. track the reaction dynamics of an electrode material, LiFePO 4 , by measuring the relative concentrations of Fe(II) and Fe(III) in it by means of high-resolution x-ray absorption spectrometry (see the Perspective by Schougaard). The exchange current density is then mapped for Li + insertion and removal. At fast cycling rates, solid solutions form as Li + is removed and inserted. However, at slow cycling rates, nanoscale phase separation occurs within battery particles, which eventually shortens battery life. Science , this issue p. 566 ; see also p. 543

Funder

U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering

DOE Office of Basic Energy Sciences

NSF

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3