Acidity Control of Interface for Improving Stability of All‐Perovskite Tandem Solar Cells

Author:

Zhou Jie1,Qiu Huihang1,Wen Tianyu1,He Zhilong12,Zou Can3,Shi Yang1,Zhu Lei1,Chen Chun‐Chao4,Liu Gang2,Yang Shuang3,Liu Feng1,Yang Zhibin1ORCID

Affiliation:

1. School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 P. R. China

2. School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University Shanghai 200240 P. R. China

3. Key Laboratory for Ultrafine Materials of Ministry of Education Shanghai Engineering Research Center of Hierarchical Nanomaterials School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China

4. School of Materials Science and Engineering Shanghai Jiao Tong University Shanghai 20024 P. R. China

Abstract

AbstractDeveloping all‐perovskite tandem solar cells has been proved to be an effective approach to boost the efficiency beyond the Shockley–Queisser limit. However, the Sn‐based narrow‐bandgap (NBG) perovskite solar cells (PSCs) suffer from the relatively low photostability, which limits their further application in all‐perovskite tandem solar cells. In this work, the instability of NBG PSCs is found to come from the commonly used acidic hole transporting material PEDOT:PSS, which reacts with the indispensable basic additive SnF2 in the perovskite layer. By acidity control of PEDOT:PSS via aqueous ammonia, the NBG PSCs yield an efficiency of 22.0% with much improved photostability, which can maintain 91.3% of the initial value after 800 h illumination under AM 1.5G. As an application, the corresponding all‐perovskite tandem cells exhibit a stabilized efficiency of 25.3% with 92% remaining after 560 h illumination. This work reveals an origin of instability of NBG PSCs and provides an effective approach to enhance the device stability, which can promote the development of all‐perovskite tandem solar cells.

Funder

National Key Research and Development Program of China

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3